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Abstract 
Introduction: Neurodegenerative diseases (NDD) present substantial challenges due to their 

impact on movement, emphasizing the critical role of biomedical engineering research in clinical 

diagnosis. Measuring the biomechanical properties of gait during walking can provide valuable 

insights into the movement pattern of NDDs and has great promise for developing non-invasive 

automated NDD classification techniques. 

Methods: Based on the GaitNDD database, two experimental trials were conducted on healthy 

controls and three NDDs: Parkinson’s disease, amyotrophic lateral sclerosis, and Huntington’s 

disease, showcasing a comprehensive analysis of one-dimensional and two-dimensional force gait 

features. In the first trial, two time-frequency feature sequences are extracted from right, left, and 

combined feet during a walking task, feeding a bidirectional long short-term memory (BiLSTM) 

network. The second trial involves constructing spectrogram images of the gait signal as input for 

three popular pre-trained convolutional neural networks (CNNs): AlexNet, GoogLeNet, and 

VGG16. 

Results: VGG16 emerges as the standout performer, achieving a remarkable accuracy of 99.91%, 

sensitivity of 99.93%, and specificity of 99.97% for automatic four-class NDD detection using 

high-level features from the right foot gait signal. Notably, BiLSTM performance significantly 

improves when fed with VGG16-extracted high-level features, surpassing hand-crafted features. 

Conclusion: The study underscores the superiority of CNNs, particularly VGG16, in extracting 

high-level features from spectrogram-derived vertical ground reaction force (vGRF) signals for 

robust NDD classification. The hybrid VGG16-BiLSTM approach demonstrates enhanced 

performance, affirming the synergistic benefits of combining deep learning techniques. Overall, 

the CNN high-level features derived from vGRF signal spectrograms provide valuable insights 

into NDD groups, offering a promising avenue for understanding diverse mechanisms underlying 

gait-related conditions. 

Keywords: Neurodegenerative disease; Gait analysis; Spectrogram; Time-frequency features; 

Short-time Fourier transform. 
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1. Introduction 

The process of neurodegeneration is the gradual loss of structure and function of neurons in a 

disease known as a neurodegenerative disease (NDD). Ultimately, such neuronal damage may 

result in the death of the cells. NDDs include Parkinson’s disease (PD), amyotrophic lateral 

sclerosis (ALS), multiple sclerosis, Alzheimer’s disease (AD), Huntington’s disease (HD), 

multiple system atrophy, and prion diseases (Stephenson, Nutma, Valk, & Amor, 2018). PD, ALS, 

and HD are a group of NDDs characterized by motor impairment due to the gradual decline of 

motor neurons in the presence of protein aggregates at different brain regions (Ghaderyan & 

Ghoreshi Beyrami, 2020; Zeng & Wang, 2015). Clinically, these NDDs manifest as hyperkinetic 

movements, bradykinesia, tremors, rigidity, and progressive muscle atrophy (Ghoreshi Beyrami 

& Ghaderyan, 2020). Additionally, these patients are more likely to fall or sustain physical injuries 

due to their abnormal movements (Allen, Schwarzel, & Canning, 2013; Vuong, Canning, Menant, 

& Loy, 2018). 

After AD, PD is the second most frequent NDD. It is estimated that the age-sex-adjusted incidence 

of PD in North America varied from 108 to 212 per 100,000 people aged 65 and older and from 

47 to 77 per 100,000 people aged 45 and older. The prevalence of PD rose with age and was more 

significant in men (Willis et al., 2022). The following motor symptoms often characterize PD: 

trembling, bradykinesia (slowed movement), rest tremor (rhythmic shaking), rigidity, reduced 

postural reflexes, and impaired balance (Abedinzadeh Torghabeh, Hosseini, & Ahmadi 

Moghadam, 2023; Váradi, 2020). ALS is the third most widespread NDD and the most prevalent 

motor neuron disease, with an estimated incidence of 1.9 per 100,000 persons annually. In Europe 

and the United States, the annual incidence of ALS is approximately 2.3 per 1,000 persons (Xu et 

al., 2020). ALS is characterized by increasing muscular weakness, muscle atrophy, fasciculations, 

muscle spasms, slow movement, and muscle stiffness. The beginning of muscular weakness in 

ALS is often localized and extends to neighboring body parts (Masrori & Van Damme, 2020). HD 

is a hereditary neurological disorder characterized by involuntary jerky movements and shaky gait 

with cognitive and behavioral impairment. These involuntary movements begin in the distal 

extremities and are of lesser severity, although they may also affect the facial muscles. The signs 

then gradually spread to the proximal and axial muscles and become more pronounced. Typically, 

motor symptoms are progressive (Roos, 2010). 

A clinical diagnosis of NDDs is widely considered one of the most crucial areas of biomedical 

engineering research because these disorders affect an increasing number of people worldwide 

physically, psychologically, and financially (Erkkinen, Kim, & Geschwind, 2018). The importance 

of a correct diagnosis will increase when disease-modifying therapies become available. There is 

potential for widespread clinical use of diagnostic biomarkers that are easy to access, cost-

effective, and accurate (Hansson, 2021). A misdiagnosis may result in inadequate treatment, 

unnecessary care-seeking, and cost-prohibitive investigations due to diagnostic uncertainty. 

Several techniques are often employed to diagnose such NDDs, including functional 

neuroimaging, genetic blood tests, spinal cord imaging, and nerve-muscle biopsy. These 

techniques allow us to examine brain structure, function, and pathology and investigate 

neurodegenerative mechanisms in vivo. As a result of movement impairment in NDDs, it is 

reasonable to conclude that NDDs also affect foot force, resulting in the use of gait modality. The 

development of gait data has been used to analyze movement and balance abnormalities in healthy 
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controls (HCs) and subjects with various diseases. In particular, measuring the biomechanical 

properties of gait during walking can provide valuable insights into the movement pattern of NDDs 

and has great promise for developing non-invasive automated NDD classification techniques. 

Wearable gait sensors have significantly reduced the need for costly laboratory equipment and 

specialized supervision. Among the various types of gait sensors, force sensors have gained 

widespread acceptance due to their exceptional accuracy in mapping joint movements and muscle 

activities. These sensors are highly popular in gait analysis research owing to their non-invasive 

nature, compact size, and affordability (Roelker, Bowden, Kautz, & Neptune, 2019). As a result, 

they have become one of the most commonly utilized tools in gait analysis studies (Abedinzadeh 

Torghabeh, Modaresnia, & Hosseini, 2024). Several gait parameters, such as stride length, stride 

time, step width, and gait velocity, are altered in patients with NDDs compared to HC. These 

alterations are often subtle and may not be visible to the naked eye, but can be detected using 

advanced gait signal analysis techniques such as machine learning (ML) algorithms. 

Recently, gait analysis has emerged as a promising non-invasive tool for detecting NDDs, 

providing valuable insights into the underlying motor impairments associated with these diseases. 

In this literature review, we will explore the current state of research on gait signal analysis for 

detecting NDDs, which all focus on PD, ALS, and HD and their corresponding HC. 

Pham (2018) discussed a gait analysis approach by transforming feature sequences into two-

dimensional (2D) texture images using the fuzzy recurrence plot (FRP) algorithm. The gray-level 

co-occurrence matrix (GLCMs) is then used to extract nineteen texture features from FRP images 

of HC and three groups of NDDs. Then, the least square support vector machine (SVM) was used 

to differentiate HC from PD, ALS, and HD, where an accuracy rate of 100% was achieved. Gupta, 

Khajuria, Chatterjee, Joshi and Joshi (2019) proposed a methodology based on statistical and 

entropic features of the vertical ground reaction force (vGRF) signal, along with autocorrelation 

and cross-correlation between gait time series. They used a rule-based classifier trained with a 

decision tree algorithm and also performed mutual information analysis to evaluate the 

effectiveness of different feature sets. Their approach achieved accuracy from 87.5% to 96.2% for 

binary classification of different NDDs and HCs. 

Ghoreshi Beyrami and Ghaderyan (2020) presented a methodology for diagnosing three types of 

NDDs based on mean, standard deviation (SD), skewness, kurtosis, and approximate entropy (AE) 

features of vGRF signals and sparse non-negative least squares (NNLS) coding classification 

technique, where their model achieved 100%, 99.78%, and 99.60% for ALS, PD, and HD detection 

tasks, respectively. Also, they could classify NDD and HC, achieving an accuracy of 98.45%. Nam 

Nguyen, Liu and Lin (2020) used the mean, SD, and multiscale sample entropy (MSE) values for 

feature extraction and utilized SVM and K-nearest neighbor (KNN) as classifiers. The 

investigation employed different windows for the segmentation data embalancement method. 

They achieved more than 99% accuracy for various binary classifications and a 99.77% accuracy 

for four-class differentiating between HC and various NDDs. 

Prabhu, Karunakar, Anitha and Pradhan (2020) used recurrence quantification analysis to quantify 

gait parameters using SVM and probabilistic neural network (NN). Thirteen HC subjects and 

thirteen NDD patients were classified using these models with the Hill-climbing feature selection 

technique. The two-class accuracy ranged from 96% to 100%. Setiawan and Lin (2021a) presented 

an approach for identifying NDDs using a time-frequency (TF) spectrogram and deep learning 

(DL) NN features. They focused on the effectiveness of feature transformations from a one-

dimensional (1D) vGRF signal into a 2D TF spectrogram, combined with principal component 

https://sciprofiles.com/profile/author/R3RrQm1kMVFyTmlhMVU0MS9FUkpmVXg2YlZZRmRZYWpMUUtCSXRkTDlIYz0=
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analysis (PCA) and convolutional NN (CNN) as a feature extractor for the classification of NDD 

patients, at which their model attained an accuracy of 87.97% through five-fold cross-validation 

(CV) and 97.42% through leave-one-out CV (LOOCV). In another study, Setiawan and Lin 

(2021b) used preprocessing, feature transformation, and classification processes, including 

dividing the vGRF signal into successive time windows, transforming it into a TF spectrogram 

using continuous wavelet transform (CWT), enhancing features with PCA, and employing CNNs 

for classification, wherein they achieved an accuracy of 96.52% using ResNet-50 in classifying 

PD severity levels. 

Erdaş, Sümer and Kibaroğlu (2021) proposed two new models which first detect NDDs by 

converting GRF to 2D quick-response (QR) code images, based on convolutional long short-term 

memory (ConvLSTM) and then three-dimensional (3D) tensors extracted with ConvLSTM fed to 

3D CNN to classify three NDDs. Their model was accurate by 95.73% in classifying NDDs and 

HC through the ten-fold CV. Lin, Wen and Setiawan (2020) used recurrence plot (RP) image 

feature extraction to improve the accuracy of NDD diagnosis. The algorithm transformed the 

vGRF signal into RP images and applied a CNN for classification. In the two-class classification, 

the accuracy was from 95.95% to 100%, while in the four-class, their model was accurate by 

97.86% on average through LOOCV. 

Faisal et al. (2023) developed a NN architecture, known as NNDNet, to identify three distinct types 

of NDDs. The model integrated vGRF signals and fourteen hand-crafted features, achieving an 

average accuracy of 83% through LOOCV. Amooei, Sharifi, and Manthouri (2023) introduced 

two models based on a CNN-LSTM network for classifying NDDs using gait signals transformed 

into spectrogram images. The first model achieved 99.42% accuracy using CNN-LSTM, while the 

second model, which used wavelet transform as a feature extractor and CNN-LSTM, achieved an 

accuracy of 95.37% using only approximation sub-bands. 

These studies demonstrated that DL algorithms have gained popularity and shown promising 

results in accurately classifying gait signals for the automated diagnosis of NDDs, highlighting 

their potential as a valuable tool for medical diagnosis and treatment.  

This study attempts to establish a prognostic solution for the classification of NDDs utilizing 

conveniently obtainable data from wearable sensors. In light of this, an intelligent tool can detect 

NDDs based on gait data. Moreover, given the significant dearth of research focused on multi-

class classification, this investigation distinguishes itself apart from conventional gait analysis 

methodologies by prioritizing the enhancement of four-class classification effectiveness. This 

approach allowed us to explore the complexity of multi-class classification and gain a deeper 

understanding of the distinctive patterns and characteristics among the various disease groups. Our 

proposed method contributes in four major capacities. 

• First, this study offers two TF models for accurately and reliably classifying NDD patients 

from the vGRF signal using bidirectional LSTM (BiLSTM) and CNN. 

• Secondly, this study examines the effectiveness of feature transformations from a 1D vGRF 

signal to a 2D TF spectrogram. 

• Thirdly, this research presents a highly efficient approach for identifying NDDs, which may 

be incredibly useful for clinical decision support systems and obtain the most significant 

classification accuracy for three types of NDDs. Our suggested technique outperformed 

existing models employed in prior research to predict NDDs. 
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• Last, we have enhanced the efficiency of BiLSTM by incorporating the top-performing high-

level features of the best CNN model into BiLSTM. 

The current study is organized into the following sections. First, Section 2 delves into the existing 

research on automated techniques for diagnosing NDDs. Section 3 presents the materials and 

methods employed in this study. Subsequently, Section 4 presents the experimental findings, and 

Section 5 argues corresponding discussions. Finally, Section 6 concludes the study. 

 

2. Materials and Methods 

The proposed study investigates the potential of pre-trained DL models for transferring their 

learned useful features trained on extensive datasets for the non-invasive detection of NDDs 

through gait signal analysis. 

2.1. Materials 

Our study utilized the gait in NDD database (GaitNDD), developed by Hausdorff et al. (2000) and 

available on the Physionet website (GaitNDD Data Repository, 2019). There are gait recordings 

of 20 patients with HD, 13 with ALS, 15 with PD, and 16 HC subjects. The recordings are 

produced using force-sensitive resistors placed under the foot during a 77-meter walking trial. 

Each of the 64 records contains 5-minute gait signals sampled at 300 Hz with a 12-bit analog-to-

digital converter. Fig. 1 depicts the gait signal of the proposed dataset and their altered gait rhythm. 
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(a) HC 

 

(b) PD 
   

 

 

 
(c) ALS 

 

(d) HD 
Fig. 1. Force-time curves of gait signal for the HC group, and three groups with NDD. The gait signals 

are shown for the left foot (LF), right foot (RF), and the summation of both feet (SF) 

2.2. Methods 

This study proposes two TF gait analysis methods for diagnosing three types of NDDs. Three 

distinct types of gait signals were employed as input in our study, namely the left foot (LF), the 

right foot (RF), and the summation of both feet (SF). In the context of gait analysis, it is imperative 

to account for the coordination between the legs. To this end, a singular movement signal from 

one foot would not suffice. Therefore, to accurately capture the gait dynamics, we opted to total 

up the force applied by each foot. 

At the outset, these three distinct types of gait signals were uniformly segmented into 30-second 

windows. Two TF moments were then extracted from each segment to be utilized as an input of 

the BiLSTM model. Subsequently, these TF features were translated into 2D spectrogram images 

for implementation in pre-trained CNNs. The proposed framework is given in Fig. 2. 
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Fig. 2. The proposed framework involves the use of either BiLSTM or CNN to detect three types of NDD 

and HC by analyzing gait signals from LF, RF, or SF. 

2.2.1 Segmentation 

The segmentation function used in this analysis disregards signals with a duration of less than 30 

seconds. Additionally, signals that exceed 30 seconds are divided into 30-second windows, with 

any remaining portion of the signal being disregarded. For example, a signal lasting 280 seconds 

would be divided into nine signals of 30 seconds each, with the remaining 20 seconds being 

ignored. This segmentation may not only shorten the time of feature extraction and training of the 

network, but it may also contribute to making our method more suitable for real-time applications. 

It should be noted that certain gait patterns may occur during shorter periods of walking that may 

not be apparent during extended periods. Furthermore, it is more convenient for the patient to 

record a shorter signal during a real-time clinical diagnosis. 

2.2.2 Time-Frequency Features 

A great deal of information in the vGRF signals can be used for the analysis and characterization 

of gait. The vGRF signal can determine the importance of its spatiotemporal characteristics, such 

as swing phase, stance phase, and stride time, for clinical purposes. A TF transform has been 

applied to gait signals to extract two transient TF features. Therefore, we decided to extract 

instantaneous frequency (IF) and spectral entropy (SE) as features. IF provides insights into the 

time-varying frequency components of signals, while SE quantifies the complexity and 

distribution of energy across different frequency bands. 

• Instantaneous Frequency 
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A non-stationary signal’s IF is a time-varying parameter that measures the signal’s average 

frequencies as it evolves over time 𝑡 (Boashash, 1992a; Boashash, 1992b). In this case, the IF is 

calculated as the first conditional spectral moment of the TF distribution of 𝑥. First, it computes 

the spectrogram power spectrum 𝑃(𝑡, 𝑓) of the input signal using the short-time Fourier transform 

(STFT) and uses the spectrum as a TF distribution. Secondly, it estimates the IF using Equation 

(1). 

• Spectral Entropy 

A signal’s SE is a measure of its spectral power distribution. The SE value is a measure of the 

complexity or randomness of the signal across different frequency bands. In the frequency domain, 

the SE calculates the Shannon entropy of the signal’s normalized power distribution. A high SE 

value indicates a more complex or unpredictable signal. SE is calculated using the following 

equation: 

where 𝑃𝑖 is the power spectral density (PSD) at a given frequency band. To calculate 𝑃𝑖, the signal 

𝑥(𝑛), is first divided into overlapping segments of a certain length. Then, a fast Fourier transform 

is applied to each segment to obtain the PSD estimate: 𝑆(𝑚) = |𝑋(𝑚)|2, where 𝑋(𝑚) is the 

discrete Fourier transform of 𝑥(𝑛). Finally, the PSD estimates from all segments are averaged to 

obtain the final PSD estimate for the signal. Once the PSD estimate is obtained, the 𝑃𝑖 values can 

be calculated by dividing the PSD estimate into non-overlapping frequency bands and summing 

the PSD values within each band. The 𝑃𝑖 values are then normalized by dividing by the total power 

in the signal. 

2.2.3 Spectrogram of vGRF 

A spectrogram image approach was considered for the 2D representation of the aforementioned 

features. To compute the time-dependent spectrum of a non-stationary signal, this function 

separates the signal into overlapping segments, windows each segment using a Kaiser window, 

calculates STFT, and concatenates the transform matrices. The equation for STFT can be written 

as follows: 

where 𝑋(𝑚, 𝜔) represents the complex spectrum at time frame 𝑚 and frequency 𝜔. 𝑥𝑛 is the input 

signal in the time domain. 𝑤(𝑛) is a window function applied to the signal to reduce spectral 

leakage. 𝑁 is the window size. 𝑅 is the hop size, which determines the amount of overlap between 

consecutive windows. 𝑒−𝑗𝜔𝑛 represents the complex exponential used to decompose the signal 

into its frequency components. The resulting spectrum is then plotted over time to create a visual 

𝑓𝑖𝑛𝑠𝑡(𝑡) =
∫ 𝑓 𝑃(𝑡, 𝑓)

∞

0
𝑑𝑓

∫ 𝑃(𝑡, 𝑓)
∞

0
𝑑𝑓

. (1) 

𝑆𝐸 = − ∑ 𝑃𝑖 log2 𝑃𝑖

𝑁

𝑚=1

, (2) 

𝑋(𝑚, 𝜔) = − ∑ 𝑥𝑛𝑤(𝑛 − 𝑚𝑅)𝑒−𝑗𝜔𝑛

𝑁−1

𝑛=0

, (3) 
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representation of the vGRF signal, with the intensity of the color indicating the power or amplitude 

of the corresponding frequency at each point in time. 

2.2.4 BiLSTM Architecture 

BiLSTM (Schuster & Paliwal, 1997) is a powerful DL architecture and type of recurrent NN 

(RNN) that is designed to handle long-term dependencies in sequential data. BiLSTMs are 

particularly effective when the context on both sides of a particular point in a sequence is important 

in making a prediction. The main idea behind a BiLSTM is to process the input sequence both 

forward and backward through two separate LSTMs and then concatenate their outputs at each 

time step to obtain the final output. The description of BiLSTM can be broken down into the 

following steps and equations shown in Table 1: 

• Input gate: Controls how much new information is added to the cell state at the current time 

step. 

• Forget gate: Controls how much information from the previous cell state should be retained. 

• Update cell state: Combines the new input information and the previous cell state information 

to form a new cell state. 

• Output gate: Controls how much of the current cell state is output as the hidden state. 

• Backward LSTM: The input sequence is also processed in reverse through a separate LSTM, 

and the outputs are concatenated with the forward LSTM outputs at each time step. 

• Final output: The final output of BiLSTM is obtained by concatenating the forward and 

backward LSTM outputs at each time step. 

Table 1. BiLSTM architecture components at time step t 

Component Formula 

Input gate 𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑊𝑖ℎ𝑡−1 + 𝑏𝑖), 

Forget gate 𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓), 

Update cell state 𝑐𝑡 = 𝑡𝑎𝑛 ℎ(𝑊𝑐𝑥𝑡 + 𝑊𝑐ℎ𝑡−1 + 𝑏𝑐), 
𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡, 

Output gate 𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑥𝑡 + 𝑊𝑜ℎ𝑡−1 + 𝑏𝑜), 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡). 

Where 𝑖𝑡, 𝑓𝑡, and 𝑜𝑡 are the input, forget, and output gates respectively, 𝑔𝑡 is the candidate memory 

cell value, 𝑐𝑡 is the current memory cell value, ℎ𝑡  is the current hidden state, ℎ𝑡−1 is the hidden 

state of the previous time step, 𝑥𝑡 is the input at time step t, 𝑊 and b are the weights and biases 

respectively, and 𝜎 and ⊙ represent the sigmoid and element-wise multiplication operations 

respectively and 𝑡𝑎𝑛ℎ is the hyperbolic tangent activation function. 

A BiLSTM allows the model to capture both past and future dependencies in a sequence, which 

can improve its performance on many sequence labeling tasks. The settings of the BiLSTM 

network play a crucial role in determining the model’s performance during training. The training 

environment involves a process of trial and error to determine the optimal parameters for our 

model. To accomplish our objectives, we determined that the adaptive moment estimation 

optimizer was an effective solver. Moreover, we set a hidden unit number in the BiLSTM layer to 

100, an initial learning rate of 0.01 with a maximum epoch of 80, and a mini-batch size of 100. 

The remaining hyperparameters were set to their default values as defined by MATLAB. 
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2.2.5 Transfer Learning CNNs 

Developing a deep CNN from scratch is computationally intensive and necessitates a substantial 

quantity of training data. In several applications, insufficient training data is available, and it is not 

possible to generate new realistic training instances. In these situations, it is beneficial to employ 

CNNs that have been trained on huge data sets for conceptually comparable tasks. The use of 

current CNNs is known as transfer learning (Abedinzadeh Torghabeh, Modaresnia, & Hosseini, 2023; 

Asghari & Hosseini, 2022; Tuib, Sheibani, & Hosseini, 2023). AlexNet (Krizhevsky, Sutskever, & 

Hinton, 2017; Modaresnia, Abedinzadeh Torghabeh, & Hosseini, 2024), GoogLeNet (Szegedy et al., 

2015; Abedinzadeh Torghabeh, Ahmadi Moghadam, & Hosseini, 2024), and VGG16 (Simonyan & 

Zisserman, 2014) are deep CNN architectures designed for image classification tasks, achieving 

state-of-the-art performance on the ImageNet dataset, which contains over one million images 

across 1,000 categories. Table 2 summarizes the types of utilized networks, whether they are 

directed acyclic graph (DAG) networks or series-networks. It also provides information about the 

number of layers, the total learnable parameters, and the size of input images. 

For the transfer learning of these models, three methods can be utilized: fine-tuning, feature 

extraction, and domain adaptation. The fine-tuning method involved transferring the weights from 

the pre-trained model and subsequently freezing the pre-trained layers of the selected model. The 

input of the selected models consists of 30-second TF spectrogram images derived from the vGRF 

signal, which should be resized to align with the model’s input size. The selected models’ last 

layers should also be modified to accommodate the four classes under investigation in this study. 

Table 2. The types of utilized transfer learning networks, along with pertinent specifications, 

including layer count, total learnable parameters, and input image dimensions 

Model Type No. Layers Total Learnables Image Input Size 

AlexNet SeriesNetwork 25 layers 60.9 million 227*227*3 

GoogLeNet DAGNetwork 144 layers 6.9 million 224*224*3 

VGG16 SeriesNetwork 41 layers 138.3 million 224*224*3 

All of these models were trained using stochastic gradient descent with momentum as the solver 

and weight decay with a momentum value of 0.9. The mini-batch size determines the number of 

samples used in each iteration to update the weights, which was set to 32, and the maximum 

number of epochs was set to 10 to prevent overfitting, and the data were shuffled in every epoch 

to avoid any bias in the training process. The learning rate determines the step size taken during 

optimization, which is initialized to 3e-4. These settings have been carefully selected to optimize 

the model’s performance for the given task. The default values for the remaining hyperparameters 

were used as specified by MATLAB. 

3. Results 

The present study aims to examine the gait signals of individuals with NDD and accurately classify 

each group solely based on their non-invasive force walking information, using a deep intelligent 

lightweight model. 

Tables 3 and 4 present the outcomes of the BiLSTM and CNN models in classifying three distinct 

vGRFs, respectively. This information is presented as mean percentages and SD during a five-fold 
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CV. CNN showed better results, which are over 99.21% accuracy for all types of RF, LF, and SF 

signals, compared to BiLSTM, which achieved from 70.43% up to 75.11% accuracy. 

3.1. BiLSTM 

Table 3 presents the performance results of the BiLSTM model. The accuracies achieved were 

75.11% for RF, 70.43% for LF, and 74.27% for SF. The model exhibited a notable average 

specificity of 91.597% in effectively discriminating the RF signals associated with distinct groups. 

In the classification of SF, the model achieved the same specificity percentage, further highlighting 

its ability to effectively distinguish each group within the dataset. 

Table 3. The average results of the BiLSTM network in percentages 

 

 

 

 

The best performance of BiLSTM is written in bold. 

3.2. CNN 

The TF spectrogram representation of each vGRF signal for the HC group and different NDDs is 

shown in Fig. 3. Table 4 shows that among the three models—VGG16, AlexNet, and 

GoogLeNet—VGG16 achieved the highest accuracy for all three TF images of the RF, LF, and 

SF, with accuracies of 99.91%, 99.82%, and 99.65%, respectively. While the accuracy percentages 

suggest that VGG16 outperforms the other models, it is important to note that these conclusions 

are based on reported metrics alone. The AlexNet and GoogLeNet models also performed well, 

with accuracies ranging from 99.21% to 99.73% for all three signals The specificity, sensitivity, 

precision, and F1 scores for all models were consistently high, exceeding 99%, indicating strong 

overall performance in classifying vGRFs from spectrogram images. However, to avoid 

overstating the results, we acknowledge the need for statistical validation in future work. 

Given that both CNNs and BiLSTM utilize features derived from the same TF transform method, 

these results suggest that CNNs generally demonstrate superior performance over BiLSTM for 

analyzing vGRF signals when employing 2D feature representations versus 1D feature 

representations. It is important to note that this study did not include hyperparameter optimization, 

which may have impacted its performance. 

In this study, we aim to further explore the patterns of gait signals, specifically the RF, LF, and 

SF, to discern which signal provides more informative insights into the classification of various 

NDDs. RF signal had better accuracy in GoogLeNet, VGG16, and BiLSTM. Only in AlexNet, LF 

showed a better result with 99.82%, which is only 0.35% more accurate than RF signal. 

Signal Accuracy Sensitivity Specificity Precision F1 score 

RF 75.116±2.459 75.188±0.019 91.597±0.007 75.949±0.017 75.032±0.027 

LF 70.434±2.407 70.022±0.0214 89.915±0.007 70.926±0.024 70.208±0.022 

SF 74.277±2.169 74.601±0.018 91.409±0.006 75.027±0.022 73.432±0.018 



 

14 
 

Fig. 3. The 30-second spectrogram of the (a) HC, (b) PD, (c) ALS, and (d) HD groups generated by utilizing the vGRF of RF, LF, and SF 
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Table 4. The average results of AlexNet, GoogLeNet, and VGG16 networks in percentages 

  Accuracy Sensitivity Specificity Precision F1 score 

A
le

x
N

et
 

RF 99.479±0.004 99.466±0.004 99.822±0.001 99.518±0.004 99.486±0.004 

LF 99.826±0.002 99.801±0.002 99.940±0.000 99.840±0.002 99.819±0.002 

SF 99.739±0.002 99.678±0.002 99.914±0.000 99.733±0.002 99.703±0.002 

G
o

o
g

L
eN

et
 

RF 99.739±0.003 99.773±0.003 99.914±0.001 99.733±0.003 99.750±0.003 

LF 99.479±0.005 99.543±0.005 99.822±0.001 99.505±0.005 99.522±0.005 

SF 99.218±0.007 99.312±0.006 99.736±0.002 99.260±0.007 99.271±0.007 

V
G

G
1

6
 RF 99.913±0.001 99.930±0.001 99.971±0.000 99.915±0.001 99.922±0.001 

LF 99.826±0.002 99.861±0.001 99.944±0.000 99.804±0.002 99.831±0.002 

SF 99.652±0.001 99.609±0.002 99.887±0.000 99.629±0.002 99.615±0.002 

The best performance of each model is written in bold. 

3.3. VGG16-BiLSTM 

In the RNN approach, utilizing BiLSTM alone did not yield satisfactory outcomes. To address this 

limitation, we employed a feature enhancement methodology in which we used pre-trained CNN 

with the best performance as a feature extractor and subsequently fed the extracted features to Bi-

LSTM. In the previous experiment utilizing a CNN approach, the VGG16 network was provided 

with images of the LF, RF, and SF, and it demonstrated superior performance in extracting high-

level features compared to the other two CNNs. The resulting CNN-BiLSTM network achieves a 

remarkable improvement in accurately distinguishing between four classes of NDDs and HC 

group. 

The rationale behind the approach adopted in this study is based on the fact that CNNs such as 

VGG16 consist of multiple layers, with each layer learning increasingly abstract representations 

of the input data. Consequently, deeper layers in the network tend to contain higher-level features 

constructed using the lower-level features of earlier layers. To leverage this characteristic and 

extract the most important features, 4096 features were initially extracted from the 36th layer of 

the VGG16, which is a fully connected layer. 

To further enhance the comprehensibility of the data and reduce the dimensionality of the feature 

space while retaining as much information as possible, PCA was applied to reduce the initial 

feature dimension from 4096 down to 100 features. The first 100 principal component coefficients 

were retained, as they were deemed to capture the most relevant information. Finally, the reduced 

set of features was obtained by projecting the original feature matrix onto the reduced feature space 

defined by the selected principal component coefficients. This final step resulted in a feature matrix 

with the same number of rows as the original feature matrix, but with only 100 columns, effectively 

reducing the dimensionality of the feature space and retaining the most important features. Then, 

the obtained features were normalized by subtracting the mean of each sample from it and then 

dividing it by SD. 

The network was configured with 100 hidden units, and the training process was set to run for a 

maximum of 80 epochs. A mini-batch size of 100 was utilized during the training process, while 

the initial learning rate was set to the value of 0.01. Additionally, a gradient threshold of 1 was 
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imposed during the training process to prevent exploding gradients. These network settings were 

selected based on prior research and were deemed appropriate for the current study’s objectives. 

When Tables 3 and 5 are compared; it is found that the VGG16-BiLSTM architecture 

demonstrated efficacy in accurately classifying NDDs and HC individuals with a notable 24% 

improvement in performance over the basic BiLSTM model. Specifically, as illustrated in Table 

5, the model achieved an average accuracy of 99.21% in classifying SF gait signals. Furthermore, 

the specificity, sensitivity, precision, and F1 were increased by more than 20%. This noteworthy 

enhancement serves as compelling evidence for the effectiveness of this approach in enhancing 

the classification results. The method’s ability to significantly elevate these performance metrics 

highlights its potential for optimizing the accuracy and reliability of the classification process, 

making it a valuable contribution to the field. 

Table 5. The average results of the CNN-BiLSTM network in percentages 

 Accuracy Sensitivity Specificity Precision F1 score 

RF 98.349±1.319 98.365±1.384 99.454±0.443 98.351±1.199 98.331±1.329 

LF 98.872±0.725 98.801±0.768 99.622±0.243 98.868±0.726 98.827±0.745 

SF 99.218±0.475 99.202±0.470 99.735±0.161 99.233±0.483 99.211±0.473 

The best performance is written in bold. 

The high level of accuracy observed in the SF gait pattern suggests that this particular gait pattern 

may hold potential benefits for computer-aided diagnosis in gait-related contexts, and may provide 

informative insights beyond those gleaned from analysis of individual LF or RF patterns alone. 

Fig. 4 depicts the accuracy and loss curve of the VGG16-BiLSTM network architecture, which 

underwent a five-fold CV process, and illustrates how the model’s performance gradually 

converges through 80 epochs. Each color in these graphs represents a separate fold used during 

the validation process. 
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(a) 

 

 
(b) 

Fig. 4. (a) Accuracy and (b) Loss of five-fold CV of CNN-BiLSTM network 

4. Discussion 

NDDs are a group of disorders characterized by the progressive loss of neurons in the brain or 

spinal cord, leading to functional impairment and disability. The early detection and diagnosis of 

these diseases are crucial for their effective management and treatment. The analysis of gait signals 

can provide valuable insights into the motor function of individuals with NDD and aid in the early 

diagnosis and treatment of related conditions. The use of a deep lightweight method can facilitate 

the accurate and time-saving classification of different NDD groups, which can contribute to 

improving the overall well-being of affected individuals. 

The primary aim of this investigation is to propose a methodology that is strong, economical, and 

non-intrusive, which has the potential to strike a better balance between cost and computational 

complexity while achieving high detection accuracy. Given that previous studies (Ghoreshi 

Beyrami & Ghaderyan, 2020), (Pham, 2018), and (Setiawan & Lin, 2021a) achieved perfect 

average accuracy in binary classification, we decided to exclude the binary classification task 

between the disease groups and HC subjects. Instead, our focus shifted solely to multi-class 

classification. 

The proposed deep TF study provides valuable insights into the health status of the cohort, as it 

allows for the identification of potential abnormalities or anomalies in the vGRF. Through the 

utilization and comparison of feature sequences, namely IF and SE, as inputs for BiLSTM, and 

their corresponding spectrogram images for CNNs, this methodology presents a comprehensive 
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and impartial evaluation of the TF features present in gait signals. Earlier investigations have 

underscored the significance of frequency (Joshi, Khajuria, & Joshi, 2017) and high-level 

spectrogram features (Setiawan & Lin, 2021a), (Setiawan & Lin, 2021b) in NDD classification. 

Building upon these findings, we employed a comprehensive approach that encompassed both 

frequency-based and high-level spectrogram features. The objective was to discern the most 

effective feature representation, whether in 1D or 2D form. Our proposed study revealed the 

prevalence of auto-extracted features, indicating their superiority over other data-driven features 

in NDD classification. This comparative analysis allowed us to uncover valuable insights into the 

optimal choice of features for improved accuracy and performance to facilitate the diagnosis and 

classification of NDD. 

The findings of this investigation demonstrate that employing spectrogram images to feed the 

CNNs, which convert time-domain signals into frequency-domain representations, provides a 

more comprehensive view of the vGRF signal than traditional 1D time-domain representations. 

By analyzing these spectrogram images using DL techniques, it is possible to extract both the 

temporal and spectral high-level features that capture the important characteristics to better 

understand the underlying signals. High-level features extracted from CNNs provide valuable 

information regarding the levels of abstraction present in an image. The earlier layers of the 

network detect lower-level features, such as edges and corners, while the later layers detect higher-

level features, such as shapes and objects. Moreover, the visualization of in-depth features 

facilitates understanding how the model makes its predictions. 

The combination of CNNs and spectrogram images has proven to be a powerful tool for feature 

extraction in vGRF signal processing tasks. The ability of CNNs to automatically learn high-level 

features from raw data, combined with the rich information provided by spectrograms, has led to 

significant improvements in accuracy and robustness compared to traditional hand-crafted feature 

extraction methods. Moreover, The high level of accuracy observed in the SF vGRF suggests that 

this particular gait pattern may hold potential benefits for computer-aided diagnosis in gait-related 

contexts, and may provide informative insights beyond those gleaned from analysis of individual 

LF or RF patterns alone. 

Table 6 presents a comparative analysis with the latest research studies in the field employing 

diverse ML techniques, as well as DL networks, including CNN or RNN architectures. It is 

noteworthy that the table highlights a superior performance of the proposed method in comparison 

to prior multi-class NDD detection methods utilizing the identical dataset. The VGG16-BiLSTM 

approach with 99.21% accuracy also outperforms other studies using the DL approach for the four-

class classification of NDDs. 

The CNN and CNN-BiLSTM models employed in the present investigation have been determined 

to be reliable diagnostic tools for NDD, exhibiting minimal SD throughout the five-fold CV. 
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Table 6. Comparison with the state-of-art methods using the same gait signal dataset for the four-class classification of NDDs and HC group 

Ref Network Classifier Features Validation Dimensions Accuracy (%) 

(Ghoreshi 

Beyrami & 

Ghaderyan, 

2020) 

ML SVM/MLFN/NNLS Statistical and AE features Five-fold CV 1D 98.45 

(Nam Nguyen et 

al., 2020) 
ML SVM/KNN Statistical and MSE features Ten-fold CV 1D 99.77 

(Setiawan & Lin, 

2021a) 
CNN AlexNet 

High-level features from the 

spectrogram generated by 

CWT, STFT, and WSST 

Five-fold CV 2D 87.97 

(Lin et al., 2020) CNN AlexNet High-level features from RP LOOCV 2D 97.86 

(Faisal et al., 

2023) 
CNN NDDNet Gait and gait-cycle features LOOCV 1D 83 

Proposed method CNN+RNN VGG16-BiLSTM 

high-level features from the 

spectrogram generated by 

STFT 

Five-fold CV 2D 99.91 
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5. Conclusion 

This study demonstrates the effectiveness of BiLSTM and CNNs in accurately detecting NDD 

from vGRF signals obtained through wearable force sensors. Two experimental trials were 

conducted, wherein two informative TF features were extracted from the vGRF of the right, left, 

and combined feet of patients during a walking task, which were then used to feed a BiLSTM 

network. In the second trial, equivalent spectrogram images of the vGRF signal were constructed 

as input for CNNs. The findings demonstrate that utilizing transfer learning with VGG16 yielded 

superior outcomes in the automatic identification of NDDs, with accuracy, sensitivity, and 

specificity rates of 99.91%, 99.93%, and 99.97%, respectively. The significant promotion in the 

BiLSTM network performance was also achieved by feeding high-level features extracted from 

VGG16 instead of hand-crafted features. Overall, the CNN high-level features extracted from the 

spectrogram derived from the vGRF signal can provide valuable insights into the underlying NDD 

group and help researchers better understand the mechanisms of vGRF in different NDDs. 
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